Вт. Апр 23rd, 2024

Гидростатическое давление. Как известно, в покоящейся жидкости возможен лишь один вид напряжений – напряжения сжатия, т. е. гидростатическое давление. Гидростатическое давление в жидкости имеет следующие два свойства:

  1. На внешней поверхности гидростатическое давление всегда направлено по нормали, внутрь рассматриваемого объема жидкости.

    Это свойство непосредственно вытекает из определения давления как напряжения от нормальной сжимающей силы. Под внешней поверхностью жидкости понимают не только поверхности раздела жидкости с газообразной средой или твердыми стенками, но и поверхности элементарных объемов, мысленно выделяемых из общего объема жидкости.

  2. В любой точке внутри жидкости гидростатическое давление по всем направлениям одинаково, т. е. давление не зависит от угла наклона площадки, на которую оно действует в данной точке. Для доказательства этого свойства выделим в неподвижной жидкости элементарный объем в форме прямоугольного тетраэдра с ребрами, параллельными координатным осям и соответственно равными dx, dy и dz ( рис. 2.1).

Untitled-4_clip_image002

Рис. 2.1

Пусть на выделенный объем жидкости действует единичная массовая сила, составляющие которой равны X,Y и Z. Обозначим через px гидростатическое давление, действующее на грань, нормальную к оси 0x, через py давление, действующее на грань, нормальную к оси 0y, и т. д.

Гидростатическое давление, действующее на наклонную грань, обозначим через pn, а площадь этой грани – через dS. Все эти давления направлены по нормалям к соответствующим площадкам.

Составим уравнения равновесия выделенного объема жидкости сначала в направлении оси 0x.

Проекция сил давления на ось 0x равна:

Untitled-4_clip_image004
Масса тетраэдра равна произведению его объема на плотность, т. е. Untitled-4_clip_image006, следовательно, массовая сила, действующая на тетраэдр вдоль оси 0x, равна:

Untitled-4_clip_image008
Уравнения равновесия тетраэдра запишем в следующем виде:

Untitled-4_clip_image010
Разделим это уравнение почленно на площадь Untitled-4_clip_image012, которая равна площади проекции наклонной грани dS на плоскость y0z, и, следовательно:

Untitled-4_clip_image014

Будем иметь:

Untitled-4_clip_image016
При стремлении размеров тетраэдра к нулю последний член уравнения, содержащий множитель dx, будет также стремиться к нулю, а давления px и pn будут оставаться конечными величинами. Следовательно, в пределе получим, что px — pn =0 или px = pn. Аналогично составляя уравнения равновесия вдоль осей 0y и 0z, после таких же рассуждений получим, что py = pn, pz = pn, т. е.

px = py = pz = pn                                        (2.1)

Так как размеры тетраэдра dx, dy и dz были взяты произвольно, то и наклон площадки dS произволен, и, следовательно, в пределе при стягивании тетраэдра в точку давление в этой точке по всем направлениям будет одинаково. Рассмотренное свойство давления в неподвижной жидкости имеет место также при движении идеальной жидкости. При движении же реальной жидкости возникают касательные напряжения, вследствие чего давление в реальной жидкости указанным свойством, строго говоря, не обладает.

От content

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *