Пт. Ноя 8th, 2024

Активным или ваттным сопротивлением называется всякое сопротивление, поглощающее электрическую энергию или вернее превращающее ее в другой вид энергии, например в тепловую, световую или химическую.

Потери энергии, а, следовательно, и активное сопротивление в электрической цепи при переменном токе всегда больше потерь энергии в этой же цепи при постоянном токе. Причина этого заключается в том, что в цепях переменного тока потери энергии обусловлены не только обычным омическим сопротивлением проводников, но и многими другими причинами.

Так, например, наличие конденсатора в цепи переменного тока связано с дополнительными потерями энергии в результате периодического (с частотой переменного тока) изменения поляризации диэлектрика или, попросту говоря, в результате непрерывного переворачивания взад и вперед молекулярных парных зарядов. При этом происходит нагревание диэлектрика, т. е. электрическая энергия превращается в тепловую. Эти потери энергии называются диэлектрическими потерями.

Кроме диэлектрических потерь, как уже говорилось раньше, происходят потери энергии из-за утечки тока вследствие несовершенства изоляции между пластинами конденсаторов. Эти потери называются потерями утечки.

Вокруг всякого переменного тока существует переменное магнитное поле. Следовательно, во всех окружающих железных предметах происходит непрерывное переворачивание молекулярных магнитиков в такт с частотой переменного тока. В результате железные предметы, находящиеся в поле переменного тока, нагреваются, т. е электрическая энергия превращается в тепловую. Эти потери называются потерями на гистерезис.

Благодаря электромагнитной индукции переменный электрический ток наводит в близлежащих замкнутых электрических цепях индукционные токи, что связано с нагреванием этих цепей, т. е. с дополнительными потерями энергии.

Кроме того, такие же индукционные круговые токи возникают не только в замкнутых электрических цепях, но и в близлежащих металлических предметах и нагревают их. Эти токи называются токами Фуко. Возникновение токов Фуко также сопряжено с потерями электрической энергии.

Токи Фуко не всегда являются вредными. Например, на принципе токов Фуко основана защита радиоприборов медными или алюминиевыми экранами от переменных магнитных полей высокой частоты.

Наконец, при очень высоких частотах цепь переменного тока может излучать электромагнитные волны (радиоволны), что связано с потерями на излучение.

Наличие всех этих потерь увеличивает активное сопротивление цепи переменному току.

Опыт показывает, что при высоких частотах и омическое сопротивление проводника оказывается значительно большим, чем при постоянном токе.

Для объяснения этого явления увеличим мысленно сечение проводника (рис. 1) и посмотрим, что происходит в нем при прохождении по нему переменного тока. Вдоль проводника взад и вперед с частотой переменного тока движется огромное количество электронов.

 

Рисунок 1. Поверхностный эффект, как фактор увеличения активного сопротивления в цепи переменного тока. Ток вытесняется магнитным полем на поверхность проводника (а), поэтому у поверхности проводника плотность тока больше, чем внутри проводника (б).

До сих пор нам было известно, что движущийся по проводнику переменный поток электронов создает вокруг него переменное магнитное поле. Теперь же, когда мы заглянем внутрь проводника, мы увидим, что магнитное поле имеется и внутри проводника. Это вызвано тем, что каждый электрон при движении создает вокруг себя магнитное поле, а так как часть электронов движется вблизи оси проводника, то они создают магнитное поле не только во вне, но и внутри проводника.

Продолжая присматриваться к происходящему внутри проводника, мы заметим, что наиболее быстро движутся электроны, находящиеся у поверхности проводника, а по мере приближения к середине проводника амплитуда (размах) колебаний электронов становится все меньше и меньше.

Почему же электроны колеблются с различными амплитудами в разных точках сечения проводника?

Это явление также имеет свое объяснение. Вспомним, что при всяком изменении скорости движения электрона на него действует ЭДС самоиндукции, противодействующая этому изменению. Вспомним также, что ЭДС самоиндукции зависит от числа магнитных силовых линий вокруг движущегося электрона. Чем большим числом магнитных силовых линий охватывается электрон, тем труднее ему совершать колебательное движение.

Теперь становится ясным, почему электроны, находящиеся у поверхности проводника, колеблются с большой амплитудой, а электроны, находящиеся глубоко внутри проводника, — с малой. Ведь первые охватываются только теми магнитными силовыми линиями, которые расположены вне проводника, а вторые охватываются и внешними и внутренними магнитными силовыми линиями.

Таким образом, плотность переменного тока получается большей у поверхности проводника и меньшей внутри его.

На рис. 1,б плотность тока характеризуется количеством красных точек. Как видим, наибольшая плотность тока получается около самой поверхности проводника.

При очень высоких частотах противодействие ЭДС самоиндукции внутри проводника становится настолько сильным, что все электроны движутся только по поверхности проводника. Это явление и называется поверхностным эффектом. Так как активное сопротивление проводника зависит от его сечения, а полезным сечением при токе высокой частоты оказывается только тонкий наружный слой проводника, то вполне понятно, что его активное сопротивление увеличивается с повышением частоты переменного тока.

Для уменьшения поверхностного эффекта проводники, по которым протекают токи высокой частоты, делают трубчатыми и покрывают их слоем хорошо проводящего металла, например серебра.

В целях борьбы с явлением поверхностного эффекта применяют также провода специальной конструкции, так называемый литцендрат.

Такой проводник свивают из отдельных тонких медных жилок, имеющих эмалевую изоляцию, причем скрутка жилок производится таким образом, чтобы каждая из них проходила поочередно то внутри проводника, то снаружи его.

Явление поверхностного эффекта особенно сильно сказывается в железных проводах, в которых вследствие большой магнитной проницаемости железа внутренний магнитный поток оказывается особенно большим и поэтому явление поверхностного эффекта становится очень заметным даже при сравнительно низких (звуковых) частотах.

От content

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *