Вс. Сен 8th, 2024

Принцип действия. Сельсины служат для синхронного поворота или вращения двух или нескольких осей, механически не связанных друг с другом. Одну из этих машин, механически соединенную с ведущей осью, называют датчиком, а другую, соединенную с ведомой осью (непосредственно или с помощью промежуточного двигателя),— приемником. При повороте ротора сельсина-датчика на какой-либо угол ротор сельсина-приемника поворачивается на такой же точно угол. Следовательно, система из двух сельсинов стремится ликвидировать рассогласование между положениями роторов датчика и приемника и в идеальном случае свести его к нулю.

Сельсины имеют две обмотки: первичную, или обмотку возбуждения, и вторичную, или обмотку синхронизации. В зависимости от числа фаз обмотки возбуждения различают одно- и трехфазные сельсины. Обмотку синхронизации сельсинов обычно выполняют по типу трехфазной.

Принцип действия сельсина не зависит от места расположения каждой из обмоток. Однако чаще всего в сельсинах обмотку синхронизации размещают на статоре, а обмотку возбуждения — на роторе (для уменьшения числа контактных колец и повышения надежности работы).

Режимы работы. Различают два основных режима работы сельсинов — индикаторный и трансформаторный.

При индикаторном режиме (рис. 1, а) ротор сельсина-приемника П соединяют непосредственно с ведомой осью O2. Этот режим применяют при малом значении тормозного момента на ведомой оси, обычно в тех случаях, когда на оси укреплена хорошо уравновешенная стрелка индикатора (отсюда название — индикаторный). Обмотки возбуждения В датчика Д и приемника П включены в общую сеть переменного тока, а обмотки синхронизации соединены линией связи ЛС. Пульсирующие магнитные потоки, создаваемые обмотками возбуждения датчика и приемника, индуцируют в трех фазах обмоток синхронизации э. д. с. Если между роторами датчика и приемника имеется некоторый угол рассогласования, то по обмоткам синхронизации будут протекать токи, которые, взаимодействуя с потоком возбуждения, создают в датчике и приемнике синхронизирующие моменты. Эти моменты имеют противоположные направления и стремятся свести угол рассогласования к нулю. Обычно ротор датчика заторможен, поэтому его синхронизирующий момент воспринимается механизмом, поворачивающим ведущую ось О1; синхронизирующий же момент приемника поворачивает его ротор в ту же сторону, что и ротор датчика, и на тот же угол.

При трансформаторном режиме сигнал о наличии рассогласования между положениями роторов датчика и приемника подается через усилитель на исполнительный двигатель, который поворачивает ведомую ось и ротор сельсина-приемника, ликвидируя рассогласование.

Трансформаторный режим применяют в тех случаях, когда к ведомой оси приложен значительный тормозной момент, т. е. когда приходится поворачивать какой-либо механизм. При работе сельсинов в трансформаторном режиме (рис. 1, б) обмотка возбуждения В датчика Д, механически связанного с ведущей осью 01, подключается к сети однофазного тока, а обмотка возбуждения В приемника П — к усилителю У, подающему питание на обмотку управления двухфазного исполнительного двигателя ИД. Обмотки синхронизации обоих сельсинов соединены линией связи ЛС.

Рис. 1. Схемы включения сельсинов при работе их в индикаторном (а) и трансформаторном (б) режимах

Переменный ток, проходящий по обмотке возбуждения датчика, создает в нем пульсирующий магнитный поток, который индуцирует э. д. с. в трех фазах обмотки синхронизации.

Так как обмотки синхронизации датчика и приемника соединены линией связи, по ним будет протекать ток, вследствие чего в приемнике создается свой пульсирующий магнитный поток. Если имеет место рассогласование положений роторов датчика и приемника, то этот поток индуцирует в обмотке возбуждения некоторую э. д. с, и на зажимах ее появляется выходное напряжение Uвых. Это напряжение через усилитель У подается на одну из обмоток статора исполнительного двигателя ИД, который поворачивает ведомую ось O2 совместно с ротором приемника. Когда рассогласование ликвидируется, выходное напряжение станет равным нулю и вращение ведомой оси прекратится.

Устройство. По конструкции сельсины разделяют на контактные, у которых обмотка ротора соединена с внешней цепью через контактные. кольца и щетки, и бесконтактные. Контактные сельсины (рис. 2) устроены так же, как асинхронные двигатели с фазным ротором малой мощности. Статор 1 и ротор 2 такого сельсина неявнополюсные, поэтому обе обмотки 3 и 4 — распределенные. Обмотка возбуждения расположена на роторе; ток к ней подводится через два контактных кольца 5. В некоторых конструкциях статор и ротор имеют явно выраженные полюсы, что обеспечивает повышение синхронизирующего момента. Основной недостаток контактных сельсинов — наличие контактных колец.

В бесконтактных сельсинах (рис. 3) обе обмотки расположены на статоре. Ротор бесконтактного сельсина представляет собой цилиндр 6 из ферромагнитного материала, разделенный немагнитной алюминиевой прослойкой 7 на две магнитно изолированные части — полюсы.

Рис. 2. Устройство контактного сельсина

Рис. 3. Устройство бесконтактного сельсина

С торцовых сторон сельсина расположены тороидальные сердечники 1, выполненные из листовой электротехнической стали. Внутренняя поверхность этих сердечников расположена над ротором, а к их внешней поверхности примыкают стержни внешнего магнитопровода 4. Однофазную обмотку возбуждения сельсина выполняют в виде двух дисковых катушек 2, расположенных с противоположных сторон статора 3 по оси сельсина между обмоткой синхронизации 5 и тороидальными сердечниками. В процессе работы сельсина пульсирующий магнитный поток возбуждения замыкается в его магнитной системе, сцепляясь с трехфазной обмоткой синхронизации на статоре. Путь, по которому происходит замыкание потока, показан на рис. 3 штриховой линией.

При повороте ротора изменяется положение оси потока относительно обмоток синхронизации, поэтому э. д. с, индуцируемая в фазах обмотки синхронизации, будет зависеть от угла поворота ротора так же, как и в контактных сельсинах.

От content