Индуктивность в цепи переменного тока будет влиять на силу переменного тока. Проверим это на следующем опыте.
Возьмем два источника питания. Один из них пусть будет источником постоянного напряжения, а второй – переменного. Причем подберем источники так, чтобы постоянное значение напряжения равнялось действующему значению переменного напряжения. Подключим к ним с помощью переключателя цепь, состоящую из лампочки и катушки индуктивности.
Причем лампочка и катушка подключены последовательно. Переключатель включим так, чтобы при одном положении цепь питалась от источника постоянного тока, а при другом – от источника переменного тока.
При включении питания от источника постоянного тока лампочка загорится очень ярко. Если подключить цепь к источнику тока с переменным напряжением, то лампочка будет гореть, но заметно слабее. Можем сделать вывод, что действующее значение силы тока при переменном токе меньше, чем сила тока при постоянном источнике.
Индуктивность катушки
Это можно объяснить с помощью явления самоиндукции. ЭДС самоиндукции катушки будет достаточно большим, и будет препятствовать нарастанию силы тока, поэтому свое максимальное значение сила тока достигнет только спустя некоторое время. Если напряжение будет быстро меняться, то сила тока не будет успевать достигнуть своего максимального значения.
Можно сделать вывод, что индуктивность катушки будет ограничивать максимальное значение силы тока. Чем больше индуктивность катушки и частота изменения напряжения, тем меньше будет максимальное значение силы тока.
Рассмотрим цепь, в которой есть только катушка индуктивности. При этом значение сопротивления катушки и соединительных проводов пренебрежимо мало.
Выясним, как будут связаны напряжение на катушке с ЭДС самоиндукции в ней. При сопротивлении катушки равном нулю, напряженность электрического поля внутри проводника тоже будет равна нулю. Равенство нулю напряженности возможно.
Напряженности электрического поля создаваемого зарядами Eк будет соответствовать такая же по модулю и противоположно направленная напряженность вихревого электрического поля, которое появится вследствие изменения магнитного поля.
Следовательно, ЭДС самоиндукции ei будет равна по модулю и противоположна по знаку удельной работе кулоновского поля.
Следовательно:
ei = -u.
Сила тока будет изменяться по гармоническому закону:
I = Im*sin(ω*t).
ЭДС самоиндукции будет равна:
Ei = -L*i’ = -L*ω*im*cos(ω*t).
Следовательно, напряжение будет равно:
U = L*ω*Im*cos(ω*t) = L*ω*Im*sin(ω*t+pi/2).
Отсюда значение действующего напряжения будет равняться Um = L*ω*Im. Видим, что между колебаниями тока и напряжения получилась разность фаз равная pi/2.
Индуктивное сопротивление
Следовательно, колебания силы тока отстают от колебания напряжения на pi/2.
Im = Um/(ω*L).
Введем обозначение XL = ω*L. Эта величина называется индуктивное сопротивление.