В зависимости от концепции, принятой при разработке MAC, возможны различные варианты ее архитектуры, среди которых выделяют три базовых типа:
- архитектуры, основанные на методах работы со знаниями;
- архитектуры, в которых используются поведенческие модели «стимул-реакция»;
- гибридные архитектуры.
В архитектурах первого типа для представления и обработки знаний используются традиционные модели, методы и средства искусственного интеллекта, а принятие решений осуществляется на основе механизмов формальных рассуждений.
- возможность формирования новых правил с применением генетического алгоритма;
- наличие механизма поощрений.
В архитектурах второго типа, которые называют реактивными, не используются традиционные для ИИ символьные модели представления знаний. Модели поведения агентов представлены либо наборами правил, которые позволяют выбрать действие, соответствующее ситуации, либо конечными автоматами, либо другими средствами, обеспечивающими формирование адекватных реакций агента на возникающие в системе стимулы. Системы этого типа, как правило, имеют высокую степень специализации и строгие ограничения на сложность решаемых задач.
Наиболее перспективными считаются гибридные интеллектуальные мультиагентные системы, которые позволяют использовать возможности интеллектуальных и реактивных архитектур. Примером может служить архитектура с иерархической базой знаний, которая содержит структурированную БЗ, рабочую память, модуль управления коммуникацией и человеко-машинный интерфейс. Агент с подобной архитектурой обладает способностью к рассуждениям и к реактивному поведению. Его БЗ содержит три уровня:
- знания предметной области;
- знания о взаимодействии, которые позволяют принимать решения в условиях неопределенности;
- управляющие знания.
Интеллектуальное поведение агента обеспечивается способностью принимать решения, а реактивное — системой контроля за содержимым рабочей памяти, которая функционирует по принципу глобальной доски объявлений. Агент взаимодействует с пользователем, используя человеко-машинный интерфейс. В общем случае гибридные архитектуры являются многоуровневыми и отличаются друг от друга структурой и содержанием уровней, которые могут соответствовать различным уровням управления, абстракции либо отдельным функциональным свойствам агента.
Одно из новых направлений — применение нейронных сетей для реализации MAC. Коннекционистские архитектуры (на основе ИНС) позволяют создавать самообучающихся агентов, знания которых формируются в процессе решения практических задач. Хорошие перспективы для реализации самообучающихся агентов имеют сети с обратными связями и нечеткие ИНС.