Пт. Ноя 22nd, 2024

Когда отражение света происходит от неровной поверхности, то ход отраженного луча в каждой ее точке определяется следующим образом. В точке падения луча проводится плоскость, касательная к поверхности, от которой происходит отражение, а затем строятся углы падения и отражения по отношению к этой плоскости.

Таким способом определены направления отраженных лучей в различных точках поверхности на рис. 29.4, где видно, что лучи, которые до отражения шли параллельным пучком, после отражения идут в разных направлениях. Такое отражение называют диффузным или рассеянным. Диффузное отражение света происходит от всех шероховатых поверхностей. Рассеянный свет, идущий от поверхностей различных тел, позволяет нам видеть эти тела.

Идеально гладкую поверхность, хорошо отражающую свет, называют зеркальной. Плоская зеркальная поверхность является плоским зеркалом (кроме плоских зеркал бывают сферические, параболические и т. д.). Пучок параллельных лучей после отражения от плоского зеркала остается параллельным, но изменяет направление своего распространения (рис. 29.5). Такое отражение называют зеркальным или правильным. На практике зеркальное отражение получается, если размеры неровностей на поверхности не превышают длины волны светового излучения.

Когда световые лучи от сильного источника света после отражения от плоского зеркала попадают в глаз человека, то они ослепляют его. Диффузное отражение неприятных ощущений в глазу не вызывает.

Если свет, рассеянный поверхностями различных тел, попадает на плоское зеркало, а затем, отражаясь, попадает в глаз человека, то в зеркале видны изображения этих тел. Выясним, как они возникают. Сначала рассмотрим, как получается изображение одной светящейся точки в плоском зеркале.

Пусть над поверхностью зеркала КМ (рис. 29.6) находится точечный источник света S. Луч SA, который идет от источника S по перпендикуляру к зеркалу, после отражения меняет свое направление на противоположное, т. е. идет по пути AS. Из всего множества лучей, попадающих из S на зеркало выделим луч SB, который падает на зеркало под углом i. После отражения он идет по пути BD, причем, <а = <i. На рис. 29.6 видно, что лучи, падающие в точки A и B, после отражения идут так, как будто бы они вышли из одной точки Si, расположенной симметрично точке S относительно зеркала КМ. Докажем это.

Угол ϕ равен углу α, поэтому и <i = <ϕ. Поскольку CB ↨ КМ, то <1 =90° — <i и <2 = 90° — <ϕ,т. е. <1 = <2. Это означает, что прямоугольные треугольники SAB и S1AB равны, так как имеют общий катет АВ и равные острые углы 1 и 2. Следовательно, SA = S1A. Это равенство справедливо для всех лучей, падающих из точки S на зеркало.

Таким образом, когда человек смотрит в зеркало, то он видит изображение источника света S в точке S1, хотя в действительности лучей, выходящих из точки S1 и попадающих в глаз, не существует. Поэтому такое изображение принято называть мнимым. Если в точку S1, где человек видит светящуюся точку, поместить экран, то на нем изображения точки S не получится. Это характерное свойство мнимого изображения. Во всех других отношениях для наблюдателя мнимое изображение ничем не отличается от действительного.

Итак, в плоском зеркале получается мнимое изображение светящейся точки S, расположенное симметрично ей относительно зеркала в точке S1.

Представим теперь себе, что перед плоским зеркалом КМ находится предмет, который на рис. 29.7 условно изображен стрелкой ВА. Положение изображения этого предмета в зеркале можно найти следующим образом. Опустив из крайних точек предмета перпендикуляры на зеркало и продолжив их за зеркало на расстояние, равное их длине до зеркала, получим точки A1 и B1. Соединив эти точки прямой линией, получим изображение стрелки ВА в зеркале. Это изображение будет мнимое и в Натуральную величину. Оно имеет следующую особенность, отличающую его от других изображений: по сравнению с самим предметом левая и правая стороны у изображения в зеркале меняются местами. Такое изображение принято называть зеркальным.

Оказывается, что мнимыми бывают не только изображения, но и источники света. Пусть на пути лучей, которые должны сойтись в точке А (такие лучи можно получить с помощью линз), поместили плоское зеркало КМ (рис. 29.8). Тогда после отражения от зеркала лучи сойдутся в точке A1 и затем уже пойдут расходящимся пучком, т. е. в точке A1 получится действительное изображение источника света А, симметричное относительно зеркала КМ. Поскольку в точке А источника света в действительности нет, условились считать, что в ней находится мнимый источник света.

Итак, изображение действительного источника света в плоском зеркале получается мнимое и за зеркалом, а изображение мнимого источника света получается действительное и перед зеркалом.

От content

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *