Рассмотрим элементарную струйку идеальной жидкости. Выделим в ней отсек 1-2, ограниченный сечениями 1-1 и 2-2. В сечении 1-1 площадью dS1(рис.3.4), действует давление p1, а скорость движения жидкости U1. В сечении 2-2 – давление p2, площадь dS2 , скорость U2.
Центры тяжести выбранных сечений расположены на высотах Z1 и Z2 над плоскостью х0у. Если бы жидкость, расположенная в трубке тока между сечениями 1-1 и 2-2 былa неподвижна, то можно было бы записать уравнение равновесия жидкости в соответствии с основным уравнением гидростатики:
или умножив все члены на g, получим:
Уравнение (3.13) описывает закон сохранения потенциальной энергии в условиях покоя жидкости. Действительно, если 1 кг жидкости поднять на высоту Z1 над условной плоскостью сравнения, а под действием давления в этом сечении жидкость в трубке пьезометра сможет подняться еще на высоту
При движении жидкость обладает также кинетической энергией. Удельная кинетическая энергия единицы массы жидкости для первого сечения:
Присоединяя значение кинетической энергии к суммарной потенциальной энергии жидкости в состоянии покоя получим уравнение, характеризующее равновесие жидкости в условиях движения:
А так как действует закон сохранения энергии, то можно записать:
Уравнение (3.17) устанавливает связь между геометрическим положением, давлением и скоростью жидкости в произвольном сечении. Оно называется уравнением Бернулли для элементарной струйки идеальной жидкости.
Анализируя уравнение можно увидеть, что расширение струйки (увеличение площади живого сечения струйки) приводит к уменьшению скорости струйки, а это уменьшает кинетическую энергию. А так как полная энергия струйки в любом сечении является величиной постоянной, т.е. сумма членов является константой, то увеличивается потенциальная энергия давления жидкости в данном сечении. И наоборот, уменьшение площади живого сечения струйки вызывает увеличение скорости и, следовательно, увеличение кинетической энергии, что приводит к уменьшению энергии потенциальной и соответственному падению давления. Проведем анализ размерности всех членов входящих в уравнение (3.17) помня о том, что силы инерции и силы тяжести были отнесены к единице массы жидкости, то есть члены уравнения, в которых присутствует скорость либо ускорение необходимо помножить на кг/кг:
Мы получили размерность удельной энергии, энергии отнесенной к единице массы жидкости (Дж/кг– это энергия 1 кг жидкости):
Уравнение (3.17) иллюстрирует энергетический смысл уравнения Бернулли – в любом сечении струйка жидкости обладает одной и той же суммарной энергией. Энергия трансформируется переходя из одного вида в другой при изменении условий течения, но сумма потенциальной и кинетической энергии остается постоянной. Рассмотрим еще один вид уравнения Бернулли – вид иллюстрирующий геометрический смысл. Для этого разделим все члены уравнения (3.17) на g:
При геометрической интерпретации трактовки уравнения Бернулли все члены уравнения (3.18) могут быть представлены отрезками. Здесь:
z – высота положения выбранного сечения над плоскостью сравнения, м;
Н – полный гидродинамический напор, м.
Все члены уравнения (3.18) имеют линейную размерность – м.
Если основа оригинала (карты пли плана) прозрачна, то копию можно снять при помощи стола со…
Определение координат точки. Пусть точка А (рис. 32) находится в квадрате, абсциссы и ординаты вершин…
Рельефом местности называется совокупность неровностей физической поверхности земли. В зависимости от характера рельефа местность делят…
Для обозначения на планах и картах различных предметов местности, применяются специально разработанные условные знаки. Для обличения…
В инженерной геодезии чаще всего пользуются топографическими картами. Их составляют в масштабах 1:10000, 1:25000, 1:50000…