Физика

Ультрафиолетовая и инфракрасная части спектра

Яркость спектра можно увеличить с помощью линз. На рис. 34.6 левая линза собирает лучи от источника света, спектр которого исследуют, а правая линза собирает все лучи одного цвета в определенную точку экрана.

Чтобы установить, какие лучи приносят на экран больше энергии, а какие меньше, пользуются термопарой Т со спаем, покрытым сажей. Спай поглощает падающее на него излучение и нагревается. Возникающую при этом э. д. с. измеряют гальванометром. Чем больше энергии приносит излучение, тем большая э. д. с. возникает в термопаре.

Исследования спектра белого света показали, что за красной частью спектра спай термопары нагревается. Стекло довольно сильно поглощает крайние красные лучи, поэтому при исследовании длинноволновой части спектра применяют линзы и призмы из каменной соли, прозрачной для красных лучей. В этом случае спай термопары сильно нагревается, даже когда он находится далеко за красной частью видимого спектра, там, где глаз ничего не видит. Это означает, что в спектре белого света за красными лучами находятся невидимые лучи, длина волны которых больше, чем у красных лучей.

Невидимые лучи, которые в спектре располагаются за красными лучами, называют инфракрасными (от лат. «инфра» — под). Они обладают ярко выраженным тепловым действием, поэтому их часто называют еще тепловыми. Инфракрасные лучи преломляются слабее красных (рис. 34.7) и имеют длины волн от 0,76 до 350 мкм.

Опыты показали, что стекло сильно поглощает и коротковолновую часть спектра. Поэтому при ее исследовании стали применять кварцевые линзы и призмы, прозрачные для такого излучения. При этом было выяснено, что короткие волны обладают ярко выраженным химическим действием, например, вызывают почернение светочувствительной бумаги. Оказалось, что эта бумага чернеет и тогда, когда она расположена за крайними фиолетовыми лучами спектра, там, где глаз ничего не видит. Невидимые лучи, расположенные за крайней фиолетовой частью спектра, называют ультрафиолетовыми (от лат. «ультра» — сверх). Они преломляются сильнее фиолетовых лучей (рис. 34.7), имеют более короткую длину волны и обладают ярко выраженным химическим действием. Ультрафиолетовые лучи имеют длины волн от 0,4 до 0,005 мкм.

content

Share
Published by
content

Recent Posts

Копирование и размножение планов и карт

Если основа оригинала (карты пли плана) прозрачна, то копию можно снять при помощи стола со…

4 месяца ago

Решение задач на топографических планах (картах)

Определение координат точки. Пусть точка А (рис. 32) находится в квадрате, абсциссы и ординаты вершин…

4 месяца ago

Рельеф местности и способы его изображения

Рельефом местности называется совокупность неровностей физической поверхности земли. В зависимости от характера рельефа местность делят…

4 месяца ago

Условные знаки топографических планов и карт

Для обозначения на планах и картах различных предметов местности, применяются специально разработанные условные знаки. Для обличения…

4 месяца ago

Номенклатура карт и планов

В инженерной геодезии чаще всего пользуются топографическими картами. Их составляют в масштабах 1:10000, 1:25000, 1:50000…

4 месяца ago

Масштабы

Масштабом называется отношение длины отрезка линии на плане (профиле) к соответствующей проекции этой линии на…

4 месяца ago