Нейронные сети могут быть реализованы программным или аппаратным способом.
Вариантами аппаратной реализации являются нейрокомпьютеры, нейроплаты и нейроБИС (большие интегральные схемы).
Одна из самых простых и дешевых нейроБИС — модель MD 1220 фирмы Micro Devices, которая реализует сеть с 8 нейронами и синапсами. Среди перспективных разработок можно выделить модели фирмы Adaptive Solutions (США) и Hitachi (Япония). Разрабатываемая фирмой Adaptive Solutions нейроБИС является одной из самых быстродействующих: объявленная скорость обработки составляет 1,2 млрд межнейронных соединений в секунду (мнс/с). Схемы, производимые фирмой Hitachi, позволяют реализовывать ИНС, содержащие до 576 нейронов.
Большинство современных нейрокомпьютеров представляют собой персональный компьютер или рабочую станцию, в состав которых входит дополнительная нейроплата. К их числу относятся, например, компьютеры серии FMR фирмы Fujitsu. Возможностей таких систем вполне хватает для решения большого числа прикладных задач методами нейроматематики, а также для разработки новых алгоритмов. Наибольший интерес представляют специализированные нейрокомпьютеры, в которых реализованы принципы архитектуры нейросетей. Типичными представителями таких систем являются компьютеры семейства Mark фирмы TRW (первая реализация перцептрона, разработанная Ф. Розенблатом, называлась Mark I). Модель Mark III фирмы TRW представляет собой рабочую станцию, содержащую до 15 процессоров семейства Motorola 68000 с математическими сопроцессорами. Все процессоры объединены шиной VME. Архитектура системы, поддерживающая до 65 000 виртуальных процессорных элементов с более чем 1 млн настраиваемых соединений, позволяет обрабатывать до 450 тыс. мнс/с.
Другим примером является нейрокомпьютер NETSIM, созданный фирмой Texas Instruments на базе разработок Кембриджского университета. Его топология представляет собой трехмерную решетку стандартных вычислительных узлов на базе процессоров 80188.
В тех случаях, когда разработка или внедрение аппаратных реализаций нейронных сетей обходятся слишком дорого, применяют более дешевые программные реализации. Одним из самых распространенных программных продуктов является семейство программ BrainMaker фирмы CSS (California Scientific Software). Первоначально разработанный фирмой Loral Space Systems no заказу NASA и Johnson Space Center пакет BrainMaker был вскоре адаптирован для коммерческих приложений и сегодня используется несколькими тысячами финансовых и промышленных компаний, а также оборонными ведомствами США для решения задач прогнозирования, оптимизации и моделирования ситуаций. Назначение пакета BrainMaker — решение задач, для которых пока не найдены- формальные методы и алгоритмы, а входные данные неполны, зашумлены и противоречивы. К таким задачам относятся прогнозирование курсов валют и акций на биржах, моделирование кризисных ситуаций, распознавание образов и многие другие. BrainMaker решает поставленную задачу, используя математический аппарат теории нейронных сетей (более конкретно — сеть Хопфилда с обучением по методу обратного распространения ошибки). В оперативной памяти строится модель многослойной нейронной сети, которая обладает свойством обучаться на множестве примеров, оптимизируя свою внутреннюю структуру. При правильном выборе структуры сети после ее обучения на достаточно большом количестве примеров можно добиться высокой достоверности результатов (97% и выше). Существуют версии BrainMaker для MS DOS и MS Windows, а также для Apple Macintosh. Кроме базовой версии пакета в семейство BrainMaker входят следующие дополнения:
В настоящее время на рынке программных средств имеется большое количество разнообразных пакетов для конструирования нейронных сетей и решения различных задач. Пакет BrainMaker можно назвать ветераном рынка. Кроме представителей этого семейства, к хорошо известным и распространенным программным средствам можно отнести NeuroShell (Ward System’s Group), Neural Works (Neural Ware Inc.) и NeuroSolutions (NeuroDimension Inc.). Объектно-ориентированные программные среды семейства NeuroSolutions предназначены для моделирования И НС произвольной структуры. Пользователю систем NeuroSolutions предоставлены возможности исследования и диалогового управления. Все данные в сети доступны для просмотра в процессе обучения посредством разнообразных инструментов визуализации. Проектирование ИНС в системе NeuroSolutions основано на модульном принципе, который позволяет моделировать стандартные и новые топологии. Важным преимуществом системы является наличие специальных инструментов, позволяющих моделировать динамические процессы в ИНС.
Рассмотрим один из тестовых примеров, в котором решается достаточно трудная задача прогнозирования значений хаотических временных последовательностей. Для предсказания значений трех членов хаотического ряда Mackey-Glass, который является эталонным тестом, выбрана топология TLRN (Time Lagged Recurrent Network) — рекуррентная сеть с запаздыванием во времени, в которой обратные связи локально ограничены. Подобные сети являются расширением многослойного перцептрона, который снабжен структурами памяти.
Они содержат обратные связи, однако проблема устойчивости здесь легко решается, а поведение таких сетей хорошо объяснимо. Сети с подобной топологией подходят для решения проблем прогнозирования, идентификации и классификации образцов, изменяющейся во времени. Выходной сигнал динамической системы можно предсказать на короткий срок, но любая малая ошибка в таких сетях увеличивается со временем из-за присущего им внутреннего фактора рассогласования, называемого положительной экспонентой Ляпунова. В таких сетях реализована структура памяти Laguerre, которая обладает удобным свойством, позволяющим контролировать глубину запоминания с помощью единственного адаптивного параметра. В памяти такого типа может храниться К/и обработанных в прошлом образцов, где К- число выходных сигналов; и -параметр памяти.
Рекуррентная сеть не может быть обучена стандартным методом обратного распространения ошибки. NeuroSolutions содержит модификацию этого алгоритма, позволяющую проводить обучение динамической сети. Нейроны выходного слоя обычно имеют линейную передаточную функцию. Такой выбор обусловлен стремлением воспроизвести волновую форму выходного сигнала. Нелинейности могут вызвать получение недопустимых значений в экстремальных точках и привести к ошибкам. Для нейронов входного слоя и скрытых слоев, как правило, подбираются нелинейные активационные функции. В процессе решения задачи определяется объем обучающей и тестирующей выборки, в удобном режиме конструируется архитектура сети (количество скрытых слоев, число нейронов), выбирается вид активационных функций, способ и параметры обучения.
Если основа оригинала (карты пли плана) прозрачна, то копию можно снять при помощи стола со…
Определение координат точки. Пусть точка А (рис. 32) находится в квадрате, абсциссы и ординаты вершин…
Рельефом местности называется совокупность неровностей физической поверхности земли. В зависимости от характера рельефа местность делят…
Для обозначения на планах и картах различных предметов местности, применяются специально разработанные условные знаки. Для обличения…
В инженерной геодезии чаще всего пользуются топографическими картами. Их составляют в масштабах 1:10000, 1:25000, 1:50000…