Машина постоянного тока (рис. 1, а) имеет обмотку возбуждения, расположенную на явно выраженных полюсах статора. По обмотке возбуждения проходит постоянный ток Iв, который создает магнитное поле возбуждения Фв. На роторе расположена обмотка якоря, в которой при вращении ротора индуцируется э. д. с.
При заданном направлении вращения якоря направление э. д. с, индуцируемой в его проводниках, зависит только от того, под каким полюсом находится проводник. Поэтому во всех проводниках, расположенных под одним полюсом, направление э. д. с. одинаковое и сохраняется таким независимо от частоты вращения. Иными словами, картина, изображающая направление э. д. с. на рис. 1, а, неподвижна во времени: в проводниках, расположенных выше горизонтальной оси симметрии (геометрической нейтрали), э. д. с. всегда направлена в одну сторону; в проводниках, лежащих ниже геометрической нейтрали, э. д. с. направлена в противоположную сторону.
При вращении якоря проводники обмотки перемещаются от одного полюса к другому; э. д. с, индуцируемая в них, меняет знак, т. е. в каждом проводнике наводится переменная э. д. с. Однако число проводников, находящихся под каждым полюсом, остается неизменным. При этом суммарная э. д. с, индуцируемая в проводниках, находящихся под одним полюсом, также неизменна по направлению и приблизительно постоянна по величине. Эта э. д. с. снимается с обмотки якоря при помощи скользящего контакта, включенного между обмоткой и внешней цепью.
Обмотка якоря выполняется замкнутой, симметричной (рис. 1, б). При отсутствии внешней нагрузки ток по обмотке не проходит, так как э. д. с, индуцируемые в различных частях обмотки, взаимно компенсируются.
Если щетки, осуществляющие скользящий контакт с обмоткой якоря, расположить на геометрической нейтрали, то при отсутствии внешней нагрузки к щеткам будет приложено напряжение U, равное э. д. с, индуцированной в каждой из половин обмоток. Это напряжение практически неизменно, хотя и имеет некоторую переменную составляющую, обусловленную изменением положения проводников в пространстве. При большом числе проводников пульсации напряжения незначительны.
Рис. 1. Электромагнитная схема двухполюсной машины постоянного тока (а) и эквивалентная схема ее обмотки якоря (б): 1 — обмотка возбуждения; 2 — главные полюсы; 3 — якорь; 4 — обмотка якоря; 5 — щетки; 6 — остов (станина)
При подключении к щеткам нагрузки Rн через обмотку якоря будет проходить постоянный ток Iя, направление которого определяется направлением э. д. с. В обмотке якоря ток Iя разветвляется и проходит по двум параллельным ветвям (токи iя).
Для обеспечения надежного токосъема щетки скользят не по проводникам обмотки якоря (как это было на заре электромашиностроения), а по коллектору, выполняемому в виде цилиндра, который набирается из медных пластин, изолированных одна от другой. К каждой паре соседних коллекторных пластин присоединяют часть обмотки якоря, состоящую из одного или нескольких витков; эту часть называют секцией обмотки якоря.
С помощью коллектора и щеток вращающаяся обмотка якоря соединяется с внешней электрической цепью. В генераторах коллектор и щетки служат для преобразования изменяющихся по направлению э. д. с. и тока в проводниках обмотки якоря в постоянные по величине и направлению э. д. с, напряжение и ток во внешней цепи. В двигателе с помощью коллектора и щеток осуществляется обратное преобразование.
Таким образом, главной особенностью машины постоянного тока является наличие коллектора, осуществляющего скользящий контакт между обмоткой якоря и внешней электрической цепью.
Рассмотрим подробнее процесс преобразования э. д. с. и тока с помощью коллектора и щеток.
Назначение коллектора в генераторе. В простейшем генераторе (рис. 2) при вращении витка в магнитном поле его рабочие (активные) стороны 1 и 2 пересекают магнитные силовые линии и в них индуцируется переменная э. д. с. е. Если к кольцам, к которым припаяны концы витка, присоединить внешнюю цепь с некоторым приемником электрической энергии, то по нему пойдет переменный ток i. Участки 3 и 4 витка являются нерабочими, так как при вращении витка они не пересекают магнитных силовых линий и, следовательно, не участвуют в создании э. д. с. Эти участки витка называют лобовыми частями.
В положении, показанном на рис. 2, а, виток не пересекает силовых линий магнитного поля, э. д. с. в нем не индуцируется и тока нет. При повороте витка по часовой стрелке на 90° (рис. 2, б) обе стороны его будет пересекать магнитное поле, при этом в активных сторонах 1 и 2 индуцируются э. д. с. с и по витку и внешней цепи начинает проходить ток i. Применяя правило правой руки, можно установить, что э. д. с, индуцированная в стороне 1 витка, будет направлена от нас, а в стороне 2 — к нам. Следовательно, во внешней цепи ток проходит от щетки А, имеющей положительный потенциал, к щетке Б с отрицательным потенциалом. В положении, показанном на рис. 2, в, виток снова не пересекает силовые линии поля, поэтому э. д. с. и ток уменьшаются до нуля. При повороте витка на 270° (рис. 2, г) под северный полюс подходит сторона 2 витка, а под южный — сторона 1. Поэтому направление э. д. с. в рабочих сторонах 1 и 2 изменяется на противоположное по сравнению с направлением его в положении, показанном на рис. 2, б. В результате изменяются полярность щеток А и Б и направление тока i во внешней цепи.
Рис. 2. Процесс индуцирования э.д.с. в простейшем электрическом генераторе (а—г) и кривые изменения э.д.с. е в проводниках обмотки якоря, напряжения u и тока i (д) во внешней цепи
Как следует из закона электромагнитной индукции, значение индуцированной э. д. с. е пропорционально числу силовых магнитных линий, пересекаемых сторонами витка в единицу времени. При перемещении рабочих сторон витка под полюсами э. д. с. е, напряжения и, действующие между щетками А и Б, и ток i будут иметь некоторые постоянные значения (см. рис. 2,6). При переходе от одного полюса к другому направления е, и и i будут изменяться.
Для получения во внешней цепи постоянных по направлению э. д. с, напряжения и тока в простейшем генераторе виток присоединяют не к двум кольцам, как показано на рис. 2, а к одному кольцу, разрезанному на две изолированные одна от другой части. Начало витка присоединяют к одной половине кольца, конец—к другой (рис. 3). Такую конструкцию называют коллектором, а отдельные изолированные части его (в данном случае полукольца) — коллекторными пластинами.
Рассмотрим процесс изменения напряжения и тока во внешней цепи, подключенной к простейшему генератору, при наличии коллектора.
В положении, показанном на рис. 3, а, э. д. с. в витке не индуцируется и тока во внешней цепи нет. При повороте витка на 90° (рис. 3, б) в его рабочих сторонах 1 и 2 индуцируется э. д. с. е и во внешней цепи будет протекать ток i от щетки Б к щетке А. В положении, показанном на рис. 3, в, э. д. с. в витке не индуцируется и ток во внешней цепи равен нулю. Наконец, при повороте витка на 270° (рис. 3, г) направление э.д.с. е в рабочих сторонах 1 и 2 витка изменяется по сравнению с положением, показанным на рис. 3, 6. Однако направление тока во внешней цепи остается неизменным, так как одновременно с поворотом витка меняются местами и коллекторные пластины, вследствие чего к щетке Б подходит пластина, связанная со стороной 2 витка, а к щетке А — пластина, связанная со стороной 1. Потенциалы щеток, т. е. напряжение и, при этом сохраняются такими же, как и в положении, показанном на рис. 3,б, и ток i во внешней цепи будет протекать в прежнем направлении. Таким образом, при замене двух контактных колец двумя изолированными одна от другой коллекторными пластинами происходит выпрямление напряжения и, действующего между щетками А и Б, а следовательно, и тока i во внешней цепи. Характер изменения напряжения и на щетках и тока i поясняется на рис. 3,д. Напряжение и ток получаются постоянными по направлению, но переменными по значению. Такой ток и напряжение называют пульсирующими.
Пульсирующий ток мало пригоден для практических целей. Для сглаживания пульсации в обмотке якоря увеличивают число витков и сответственно число коллекторных пластин.
Рис. 3. Процесс индуцирования э.д.с. в простейшем электрическом генераторе при наличии на нем коллектора (а—г) и график изменения его напряжения и и тока i во внешней цепи (д)
Для лучшего использования обмотки якоря 1 (рис. 4) отдельные витки соединяют друг с другом последовательно. К каждой коллекторной пластине 2 присоединяют конец предыдущего и начало, следующего витка. В результате получают замкнутую обмотку (рис. 4, а). При вращении якоря между любыми двумя точками такой обмотки, например между а и b (рис. 4,6), действует переменная э. д. с. eab. Однако во внешней цепи между неподвижными щетками А и Б действует постоянная по направлению и значению э. д. с. Е, равная сумме э. д. с, индуцированных во всех последовательно соединенных витках якоря, расположенных между этими щетками. Следовательно, коллектор осуществляет преобразование изменяющихся э. д. с. и тока в обмотке якоря в постоянные по величине и направлению э. д. с. и ток, действующие во внешней цепи, т. е. работает в качестве механического выпрямителя.
Рис. 4. Схемы подключения обмотки якоря к пластинам коллектора
Чем больше витков в обмотке якоря и коллекторных пластин, тем меньше пульсируют э. д. с. и ток. Полностью освободиться от пульсации невозможно. Для большей части электрических потребителей эти пульсации не играют никакой роли и совершенно не отражаются на их работе.
Назначение коллектора в электродвигателе. Электродвигатель питается от сети постоянного напряжения и к его якорю подается постоянный ток. По проводникам же обмотки якоря протекает переменный ток (см. рис. 2, д). Следовательно, в электродвигателе коллектор работает в качестве механического преобразователя постоянного тока в переменный, обеспечивая питание обмотки якоря переменным током от внешнего источника постоянного тока.
Важную роль играет коллектор при распределении тока по проводникам обмотки якоря. При вращении якоря проводники его обмотки перемещаются под полюсами машины, переходя от северного полюса к южному, затем снова к северному и т. д. Этот переход должен сопровождаться изменением направления тока в проводниках для того, чтобы электромагнитный момент машины действовал все время в одном и том же направлении. Благодаря коллектору по всем проводникам, расположенным под северным полюсом, ток проходит в одном направлении, а по проводникам, расположенным под южным полюсом,— в другом.
Рис. 5. Распределение тока по проводникам обмотки якоря при его вращении
Когда же при вращении якоря проводники меняются местами (переходят под полюсы другой полярности), направление тока в них также меняется на противоположное. Например, в положении, показанном на рис. 5, а, ток i проходит по витку 1. Возникающий при этом электромагнитный момент М направлен по часовой стрелке. Когда виток 1 в процессе поворота якоря займет положение, показанное на рис. 5,6, коллекторные пластины, к которым присоединен этот виток, выйдут из-под щеток, и ток перестанет проходить по витку 1. Однако под щетками окажется вторая пара коллекторных пластин, соединенных с витком 2, и ток i начнет проходить по этому витку. Электромагнитный момент М будет действовать в том же направлении, что и при положении якоря, показанном на рис. 5, а. То же самое будет иметь место при повороте каждого витка на 180°, когда их рабочие стороны перейдут под полюсы другой полярности. Подобную же роль в распределении тока по проводникам обмотки якоря играет коллектор при работе машины в генераторном режиме: при любом положении якоря электромагнитный тормозной момент, созданный всеми проводниками обмотки якоря, действует в одном и том же направлении.
Если основа оригинала (карты пли плана) прозрачна, то копию можно снять при помощи стола со…
Определение координат точки. Пусть точка А (рис. 32) находится в квадрате, абсциссы и ординаты вершин…
Рельефом местности называется совокупность неровностей физической поверхности земли. В зависимости от характера рельефа местность делят…
Для обозначения на планах и картах различных предметов местности, применяются специально разработанные условные знаки. Для обличения…
В инженерной геодезии чаще всего пользуются топографическими картами. Их составляют в масштабах 1:10000, 1:25000, 1:50000…