При построении модели ИНС прежде всего необходимо точно определить задачи, которые будут решаться с ее помощью. В настоящее время нейросетевые технологии успешно применяются для прогнозирования, распознавания и обобщения.
Первым этапом построения нейросетевой модели является тщательный отбор входных данных, влияющих на ожидаемый результат. Из исходной информации необходимо исключить все сведения, не относящиеся к исследуемой проблеме. В то же время следует располагать достаточным количеством примеров для обучения ИНС. Существует эмпирическое правило, которое устанавливает рекомендуемое соотношение X между количеством обучающих примеров, содержащих входные данные и правильные ответы, и числом соединений в нейронной сети: X
Если основа оригинала (карты пли плана) прозрачна, то копию можно снять при помощи стола со…
Определение координат точки. Пусть точка А (рис. 32) находится в квадрате, абсциссы и ординаты вершин…
Рельефом местности называется совокупность неровностей физической поверхности земли. В зависимости от характера рельефа местность делят…
Для обозначения на планах и картах различных предметов местности, применяются специально разработанные условные знаки. Для обличения…
В инженерной геодезии чаще всего пользуются топографическими картами. Их составляют в масштабах 1:10000, 1:25000, 1:50000…