Для жесткого (с малой длиной волны) рентгеновского излучения удобнее использовать способ Лауэ, где наблюдается дифракционная картина, образованная излучением, прошедшим через кристалл. При содействии с рентгеновским излучением кристалл действует как трёхмерная дифракционная решётка, формирующая на фотопластинке за недвижным кристаллом диапазон рентгеновского излучения в виде отдельных точек, расположенных вокруг центрального пятна (рис. 2.3).

Открытое в 1912 фон Лауэ с сотрудниками явление дифракции рентгеновского излучения на кристаллах употребляется для рентгеноструктурного анализа веществ. Дифракционная картина появляется в итоге интерференции волн, рассеянных отдельными атомами кристалла. Основной вклад в рассеяние дают обязанные колебания электронов внутренних оболочек атомов, возбуждаемые электронным полем рентгеновского излучения. Рассеивающая способность атома определяется его электрической плотностью и растёт с повышением порядкового номера (зарядового числа) элемента (если длина волны меньше размера препятствия, то она отражается, если больше – огибает, если размеры сравнимы — ведет взаимодействие).

Рис. 2.3 Способ Лауэ.

1 – первичное рентгеновское излучение, 2 — диафрагмы, 3 – кристалл, 4 – фотопластинка.

Каждому пятну на лауэграмме (не считая центрального) соответствует определённая длина волны. В случае кубической кристаллической решётки при дифракции на системе плоскопараллельных атомных плоскостей, определяемых миллеровскими индексами () длина волны максимума

, (2.7)

где — направляющие косинусы углов для падающего рентгеновского луча относительно избранной системы атомных плоскостей (рис. 2.4).

Рис. 2.4 Дифракция на системе плоскопараллельных атомных плоскостей в случае кубической кристаллической решётки

Как и в случае способа Брэгга, из сплошного диапазона падающего излучения кристалл сам выбирает длину волны , нужную для выполнения условия (2.7).

Если в способе Лауэ использовать мягкое (длинноволновое) рентгеновское излучение, то решающую роль будет играть поглощение и на так именуемых адсорбционых рентгенограммах регится «теневое» изображение всасывающего объектива. На рентгеновских снимках кости человека практически всегда темнее, так как они поглощают рентгеновское излучение посильнее, чем прилегающие ткани, благодаря большому содержанию металлов.

В проекционном рентгеновском микроскопе употребляется теневая проекция объекта, приобретенная при помощи расходящегося пучка рентгеновских лучей. Он состоит из рентгеновского источника с микрофокусом , камеры для размещения исследуемого объекта и регистрирующего устройства. Повышение определяется отношением расстояния от объекта до сенсора к расстоянию от источника до объекта. Контраст в изображении появляется благодаря различию в поглощении рентгеновского излучения отдельными участками объекта и определяет чувствительность теневого рентгеновского микроскопа. В качестве сенсоров употребляются фотоплёнка и электронно-оптические преобразователи.

Получение совершенных кристаллов кремния и германия позволило сделать рентгеновские интерферометры. В трехкристальном интерферометре один кристалл расщепляет падающее рентгеновское излучение на две когерентные волны. 2-ой кристалл отражает одну из этих волн в направлении области интерференции. 3-ий кристалл нужен для преобразования приобретенной интерференционной картины атомного масштаба (расстояние меж интерференционными полосами ) в рассредотачивание интенсивности макроскопического масштаба, понижая угол меж интерферирующими волнами.

Способ рентгеновской томографии даёт возможность реконструировать объёмное рассредотачивание физических черт изучаемого объекта. Объект рассматривается как совокупа огромного числа параллельных сечений. Источник и сенсор рентгеновского излучения поочередно перебегает от 1-го поперечного сечения к другому, выполняя для каждого сечения серию измерений. При измерении источник и сенсор находятся в обратных точках периметра сечения, перемещаясь по всему периметру. Для каждого положения производятся два измерения: в отсутствии объекта, при наличии объекта. По приобретенным парам значений интенсивности проводится компьютерная реконструкция трёхмерного рассредотачивания исследуемой физической свойства объекта.

content

Recent Posts

Копирование и размножение планов и карт

Если основа оригинала (карты пли плана) прозрачна, то копию можно снять при помощи стола со…

6 месяцев ago

Решение задач на топографических планах (картах)

Определение координат точки. Пусть точка А (рис. 32) находится в квадрате, абсциссы и ординаты вершин…

6 месяцев ago

Рельеф местности и способы его изображения

Рельефом местности называется совокупность неровностей физической поверхности земли. В зависимости от характера рельефа местность делят…

7 месяцев ago

Условные знаки топографических планов и карт

Для обозначения на планах и картах различных предметов местности, применяются специально разработанные условные знаки. Для обличения…

7 месяцев ago

Номенклатура карт и планов

В инженерной геодезии чаще всего пользуются топографическими картами. Их составляют в масштабах 1:10000, 1:25000, 1:50000…

7 месяцев ago

Масштабы

Масштабом называется отношение длины отрезка линии на плане (профиле) к соответствующей проекции этой линии на…

7 месяцев ago