Физика

Математический маятник

Математический маятник – это модель обычного маятника. Под математическим маятником – понимается материальная точка, которая подвешена на длинной невесомой и нерастяжимой нити.

Выведем шарик из положения равновесия и отпустим. На шарик будут действовать две силы: сила тяжести и сила натяжения нити. При движении маятника, на него еще будет действовать сила трения воздуха. Но мы будем считать её очень маленькой.

Разложим силу тяжести на две составляющих: силу, направленную вдоль нити, и силу направленную перпендикулярно касательной к траектории движения шарика.

Эти две силы составят в сумме силу тяжести. Силы упругости нити и составляющая силы тяжести Fn сообщают шарику центростремительное ускорение. Работа этих сил будет равняться нулю, и следовательно они будут лишь менять направление вектора скорости. В любой момент времени, он будет направлен по касательной к дуге окружности.

Под действием составляющей силы тяжести Fτ шарик будет двигаться по дуге окружности с нарастающей по модулю скоростью. Значение этой сила всегда изменяется по модулю, при прохождении положения равновесия она равняется нулю.

Динамика колебательного движения

Уравнение движения тела, колеблющегося под действием силы упругости.

Общее уравнение движения:

m*a = F.

Колебания в системе происходят под действием силы упругости, которая согласно закону Гука прямо пропорциональна смещению груза:

Fx = -k*x

Тогда уравнение движения шарика примет следующий вид:

m*a = -k*x.

Разделим это уравнение на m, получим следующую формулу:

a = (-k/m)*x.

И так как масса и коэффициент упругости величины постоянные, то и отношение (-k/m) тоже будет постоянное. Мы получили уравнение, которые описывают колебания тела под действием силы упругости.

Проекция ускорения тела будет прямо пропорциональна его координате, взятой с противоположным знаком.

Уравнение движения математического маятника

Уравнение движения математического маятника описывается следующей формулой:

a = (-g/l)*x.

Это уравнение имеет такой же вид, что и уравнение движения груза на пружине. Следовательно, колебания маятника и движения шарика на пружине происходят одинаковым образом.

Смещение шарика на пружине и смещение тела маятника от положения равновесия изменяются со временем по одинаковым законам.

content

Share
Published by
content

Recent Posts

Копирование и размножение планов и карт

Если основа оригинала (карты пли плана) прозрачна, то копию можно снять при помощи стола со…

11 месяцев ago

Решение задач на топографических планах (картах)

Определение координат точки. Пусть точка А (рис. 32) находится в квадрате, абсциссы и ординаты вершин…

11 месяцев ago

Рельеф местности и способы его изображения

Рельефом местности называется совокупность неровностей физической поверхности земли. В зависимости от характера рельефа местность делят…

11 месяцев ago

Условные знаки топографических планов и карт

Для обозначения на планах и картах различных предметов местности, применяются специально разработанные условные знаки. Для обличения…

11 месяцев ago

Номенклатура карт и планов

В инженерной геодезии чаще всего пользуются топографическими картами. Их составляют в масштабах 1:10000, 1:25000, 1:50000…

11 месяцев ago

Масштабы

Масштабом называется отношение длины отрезка линии на плане (профиле) к соответствующей проекции этой линии на…

11 месяцев ago