Существует легенда о том, как Архимед пришел к открытию, что выталкивающая сила равна весу жидкости в объеме тела. Он размышлял над задачей, заданной ему сиракузским царем Гиероном (250 лет до н. э.).
Царь Гиерон поручил ему проверить честность мастера, изготовившего золотую корону. Хотя корона весила столько, сколько было отпущено на нее золота, царь заподозрил, что она изготовлена из сплава золота с другими, более дешевыми металлами. Архимеду было поручено узнать, не ломая короны, есть ли в ней примесь или нет.
Достоверно неизвестно, каким методом пользовался Архимед, но можно предположить следующее, Сначала он нашел, что кусок чистого золота в 19,3 раза тяжелее такого же объема воды. Иначе говоря, плотность золота в 19,3 раза больше плотности воды.
Архимеду надо было найти плотность вещества короны. Если эта плотность оказалась бы больше плотности воды не в 19,3 раза, а в меньшее число раз, значит, корона была изготовлена не из чистого золота.
Взвесить корону было легко, но как найти ее объем? Вот что затрудняло Архимеда, ведь корона была очень сложной формы. Много дней мучила Архимеда эта задача. И вот однажды, когда он, находясь в бане, погрузился в наполненную водой ванну, его внезапно осенила мысль, давшая решение задачи. Ликующий и возбужденный своим открытием, Архимед воскликнул; «Эврика! Эврика!», что значит; «Нашел! Нашел!».
Архимед взвесил корону сначала в воздухе, затем в воде. По разнице в весе он рассчитал выталкивающую силу, равную весу воды в объеме короны. Определив затем объем короны, он смог уже вычислить ее плотность. А зная плотность, ответить на вопрос царя: нет ли примесей дешевых металлов в золотой короне?
Легенда говорит, что плотность вещества короны оказалась меньше плотности чистого золота. Тем самым мастер был изобличен в обмане, а наука обогатилась замечательным открытием. Историки рассказывают, что задача о золотой короне побудила Архимеда заняться вопросом о плавании тел. Результатом этого было появление замечательного сочинения «О плавающих телах», которое дошло до нас.
Седьмое предложение (теорема) этого сочинения сформулировано Архимедом следующим образом:
Тела, которые тяжелее жидкости, будучи опущены в нее, погружаются все глубже, пока не достигают дна, и, пребывая в жидкости, теряют в своем весе столько, сколько весит жидкость, взятая в объеме тел.
Упр. Предположив, что золотая корона царя Гиерона в воздухе весит 20Н, а в воде 18,75Н, вычислите плотность вещества короны. Полагая, что к золоту было подмешено только серебро, определите, сколько в короне было золота и сколько серебра. При решении задачи плотность золота считайте равной округленно 20 000 кг/м3, плотность серебра — 10 000 кг/м3.
Если основа оригинала (карты пли плана) прозрачна, то копию можно снять при помощи стола со…
Определение координат точки. Пусть точка А (рис. 32) находится в квадрате, абсциссы и ординаты вершин…
Рельефом местности называется совокупность неровностей физической поверхности земли. В зависимости от характера рельефа местность делят…
Для обозначения на планах и картах различных предметов местности, применяются специально разработанные условные знаки. Для обличения…
В инженерной геодезии чаще всего пользуются топографическими картами. Их составляют в масштабах 1:10000, 1:25000, 1:50000…