Нагревостойкость — одно из самых важных качеств электроизоляционных материалов, так как она определяет допустимую нагрузку электрических машин и аппаратов. При повышении температуры многие из этих материалов начинают обугливаться и становятся проводниками.
Все материалы от длительного воздействия повышенных температур задолго до обугливания приобретают хрупкость, легко разрушаются и теряют свои изолирующие свойства. Этот процесс называется тепловым старением. Способность электроизоляционных материалов выдержать без вреда для них воздействие повышенной температуры, а также резкие смены температуры называется нагревостойкостью.
Нагревостойкость изоляции является основным требованием, определяющим надежность работы и срок службы электрической машины, который нормально составляет 15—20 лет. Электроизоляционные материалы по нагревостойкости делят на семь классов:
Ниже перечислены материалы, относящиеся к каждому из этих классов: класс Y — текстильные и бумажные материалы, изготовленные из хлопка, натурального шелка, целлюлозы и полиамидов (ленты, бумага, картон, фибра), древесина и пластмассы с органическими наполнителями;
класс А — материалы класса Y, пропитанные изоляционным составом или погруженные в жидкие диэлектрики (натуральные смолы, масляные, асфальтовые, эфирцеллюлозные лаки, трансформаторное масло, термопластичные компаунды); лакоткани, изоляционные ленты, лакобумаги, электрокартон, гетинакс, текстолит, пропитанное дерево, древесные слоистые пластики, некоторые синтетические пленки, изоляция проводов (ПБД, ПЭВЛО, ПЭЛШО и др.) из хлопчатобумажной ткани, шелка и лавсана, эмалевая изоляция проводов (ПЭЛ ПЭМ ПЭЛР и ПЭВД и др.);
класс Е — синтетические пленки и волокна, некоторые лакоткани на основе синтетических лаков, термореактивные синтетические смолы и компаунды (эпоксидные, полиэфирные, полиуретановые, изоляция проводов типов ПЛД, ПЭПЛО из лавсана, эмалевая изоляция проводов типов ПЭВТЛ, ПЭТВ и др. на основе полиуретановых и полиамидных смол);
класс В — материалы на основе слюды (миканиты, микаленты, слюдиниты, слю-допласты), стекловолокна (стеклоткани, стеклолакоткани), асбестовых волокон (пряжа, бумага, ткани) с бумажной, тканевой или органической подложкой; пленкостеклопласт «Изофлекс»; пластмассы с неорганическим наполнителем; слоистые пластики на основе стекловолокнистых и асбестовых материалов; термореактивные синтетические компаунды; эмалевая изоляция проводов типов ПЭТВ, ПЭТВП и др. на основе полиэфирных лаков и термопластических смол. Пропитывающими составами служат битумно-масляно-смоляные лаки на основе природных и синтетических смол;
класс F — материалы, указанные в классе В, из слюды, стекловолокна, асбеста, но без подложки или с неорганической подложкой; пленкостеклопласт «Имидофлекс», стекловолокнистая и асбестовая изоляция проводов типов ПСД, ПСДТ, а также эмалевая изоляция проводов типов ПЭТ-155, ПЭТП-155 на основе капрона. Пропитывающими составами служат термостойкие синтетические лаки и смолы;
класс Н — указанные в классе В материалы из слюды, стекловолокна и асбеста без подложки или с неорганической подложкой, кремнийорганические эластомеры, стекловолокнистая и асбестовая изоляция проводов типов ПСДК, ПСДКТ, эмалевая изоляция проводов типов ПЭТ-200, ПЭТП-200 и др. на основе кремнийорганических лаков; пропитывающими составами служат кремнийорганические лаки и смолы;
класс С — слюда, стекло, стекловолокнистые материалы, электротехническая керамика, кварц, шифер, асбестоцемент, материалы из слюды без подложки или со стекловолокнистой подложкой, полиимидные и полифторэтиленовые пленки. Связующим составом служат кремнийорганические и элементоорганические лаки и смолы.
Электрические машины с изоляцией класса А практически не изготовляются, а класса Е — находят ограниченное применение в машинах малой мощности. Применяют в основном изоляцию классов В и F, а в специальных машинах, работающих в тяжелых условиях (металлургия, горное оборудование, транспорт),— класса Н. В результате использования более нагревостойких материалов, улучшения свойств электротехнических сталей и улучшения конструкций за последние 60—70 лет удалось уменьшить массу электрических машин в 2,5—3 раза.
Наибольшей нагревостойкостью обладают стекловолокнистые и слюдяные материалы, содержащие кремнийорганические связующие и пропитывающие составы, эмалевая изоляция проводов на основе кремнийорганических лаков и синтетические пленки «Изофлекс», «Имидофлекс» и др.
Приведенные предельные температуры нагрева для отдельных классов изоляции не могут быть полностью использованы в практике, так как в условиях эксплуатации электрических машин и аппаратов не представляется возможным установить точный контроль за температурой изоляции наиболее нагретых деталей.
Поэтому существующие стандарты на электрические машины устанавливают более низкие пределы допускаемых температур отдельных деталей машин в зависимости от конструкции этих деталей и расположения их в машине. Нормируют не сами температуры, а максимально допустимые превышения температур ?max, так как от нагрузки машины зависит только превышение температуры.
В таблице приведены в качестве примера предельно допускаемые превышения температуры ?max для отдельных частей электрических машин общего применения (О) и тяговых (Т) при продолжительном режиме работы при измерении температуры обмоток по методу сопротивления (т. е. по измерению сопротивления соответствующей обмотки в результате нагрева), а температуры коллектора и контактных колец — с помощью термометров. Эти данные соответствуют температуре окружающей среды +40 °С для машин О и +25 °С для машин Т.
Если температура окружающей среды больше или меньше +40 или +25 °С, то стандарт разрешает определенные изменения допустимых превышений температур. При работе машины в горных местностях, где из-за понижения атмосферного давления ухудшается теплоотдача, стандарт предусматривает некоторое уменьшение допустимых превышений температуры.
Если основа оригинала (карты пли плана) прозрачна, то копию можно снять при помощи стола со…
Определение координат точки. Пусть точка А (рис. 32) находится в квадрате, абсциссы и ординаты вершин…
Рельефом местности называется совокупность неровностей физической поверхности земли. В зависимости от характера рельефа местность делят…
Для обозначения на планах и картах различных предметов местности, применяются специально разработанные условные знаки. Для обличения…
В инженерной геодезии чаще всего пользуются топографическими картами. Их составляют в масштабах 1:10000, 1:25000, 1:50000…